Title :
One-step optimal measurement selection for linear gaussian estimation problems
Author :
Fuhrmann, Daniel R.
Author_Institution :
Washington Univ., St. Louis
Abstract :
This paper considers the problem of choosing the optimal linear measurement for the estimation of a state vector X in a Bayesian context where the prior distribution for X is multivariate Gaussian. The motivation for this comes from waveform-agile active sensing systems that have the capability of choosing transmit or illumination waveforms in real time. The measurement is characterized by a measurement matrix B with an energy constraint along each row. Qualitatively, the optimal solution applies the available transmit energy to each of the eigenmodes of the prior covariance of X, such that more energy is applied to modes with higher prior variance, in an attempt to bring the posterior variances down to a small common value. The allocation of the energy along the various eigenmodes requires the solution of a straightforward waterfilling problem.
Keywords :
Bayes methods; Gaussian processes; covariance analysis; signal processing; waveform analysis; Bayesian context; eigenmodes; linear Gaussian estimation; one-step optimal measurement selection; transmit energy; waveform-agile active sensing systems; Bayesian methods; Electric variables measurement; Energy measurement; Filtering; Kalman filters; Laboratories; Particle measurements; Radar tracking; State estimation; Systems engineering and theory;
Conference_Titel :
Waveform Diversity and Design Conference, 2007. International
Conference_Location :
Pisa
Print_ISBN :
978-1-4244-1276-1
Electronic_ISBN :
978-1-4244-1276-1
DOI :
10.1109/WDDC.2007.4339415