DocumentCode :
3484195
Title :
TS-RLS algorithm for pseudo-linear regressive models
Author :
Rui Ding ; Honghong Duan
Author_Institution :
Sch. of Internet of Things Eng., Jiangnan Univ., Wuxi, China
fYear :
2012
fDate :
27-29 June 2012
Firstpage :
2683
Lastpage :
2688
Abstract :
This paper presents a two-stage recursive least squares (TS-RLS) algorithm for pseudo-linear regressive models corresponding to the Box-Jenkins models by combining the auxiliary model identification idea and the decomposition technique. The basic idea is to decompose a system into two subsystems with the system model parameters and the noise model parameters, respectively, and then to identify the parameters of each subsystem. Compared with the auxiliary model based recursive generalized extended least squares algorithm, the TS-RLS algorithm has less computational burden. The simulation results confirm these conclusions.
Keywords :
autoregressive moving average processes; least squares approximations; regression analysis; Box-Jenkins models; TS-RLS algorithm; auxiliary model based recursive generalized extended least squares algorithm; auxiliary model identification idea; decomposition technique; noise model parameters; parameter identification; pseudo-linear regressive models; system model parameters; two-stage recursive least squares algorithm; Autoregressive processes; Computational modeling; Mathematical model; Parameter estimation; Signal processing algorithms; Stochastic processes; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2012
Conference_Location :
Montreal, QC
ISSN :
0743-1619
Print_ISBN :
978-1-4577-1095-7
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2012.6315494
Filename :
6315494
Link To Document :
بازگشت