Title :
STEEL: A technique for stress-enhanced standard cell library design
Author :
Cline, Brian T. ; Joshi, Vivek ; Sylvester, Dennis ; Blaauw, David
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI
Abstract :
Mobility degradation and device scaling limitations have led process engineers to develop new techniques that introduce mechanical stress in MOSFET channels, which results in enhanced carrier transport. New fabrication steps strive to increase carrier mobility which, consequently, increases both Ion and Ioff in CMOS devices. However, most stress-enhancement techniques are dependent on layout parameters and their effects can be exploited within standard cell library design. In this work, we propose a new standard cell library design methodology that shares VDD and VSS source/drain connections across standard cell boundaries. Such sharing allows for increased channel stress in both the corresponding device as well as its neighboring devices. Using an industrial 65 nm process and standard cell library, we show that our standard cell design methodology can be seamlessly integrated into current, state-of-the-art digital IC design flows. The new shared source/ drain technique improves critical path delay by 11% on average over a number of benchmarks for only a ~35% increase in leakage. Furthermore, stress-enhanced standard cell libraries offer a superior power/ delay tradeoff compared to dual-Vth across a wide range of operating points with reduced manufacturing costs. Specifically, our stress-enhanced library (with a single Vth) consumes ~2.5X less leakage than its dual-Vth counterpart.
Keywords :
CMOS integrated circuits; MOSFET; carrier mobility; electrical faults; MOSFET channels; carrier mobility; carrier transport; channel stress; critical path delay; digital IC design; mechanical stress; source-drain connections; stress-enhanced standard cell library design; Degradation; Delay; Design methodology; Digital integrated circuits; Fabrication; MOSFET circuits; Manufacturing; Software libraries; Steel; Stress;
Conference_Titel :
Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM International Conference on
Conference_Location :
San Jose, CA
Print_ISBN :
978-1-4244-2819-9
Electronic_ISBN :
1092-3152
DOI :
10.1109/ICCAD.2008.4681652