DocumentCode :
3489513
Title :
Reliable MLC NAND flash memories based on nonlinear t-error-correcting codes
Author :
Wang, Zhen ; Karpovsky, Mark ; Joshi, Ajay
Author_Institution :
Reliable Comput. Lab., Boston Univ., Boston, MA, USA
fYear :
2010
fDate :
June 28 2010-July 1 2010
Firstpage :
41
Lastpage :
50
Abstract :
Multi-level cell (MLC) NAND flash memories are very popular storage media because of their power efficiency and big storage density. This paper proposes to use nonlinear t-error-correcting codes to replace linear BCH codes for error detection and correction in MLC NAND flash memories. Compared to linear BCH codes with the same bit-error correcting capability t, the proposed codes have less errors miscorrected by all codewords and nearly no undetectable errors. For example, the proposed (8281, 8201, 11) 5-error-correcting code has no errors of multiplicity six miscorrected by all codewords while the widely used (8262, 8192, 11) linear shortened BCH code has 11 over 6 × A11 errors in this class, where A11 ≈ 1014 is the number of codewords of Hamming weight eleven in the shortened BCH code. Moreover, in spite of the fact that the Hamming distance of the proposed code is 2t+1, it can also correct some errors of multiplicity t+1 and t+2 requiring no extra hardware overhead and latency penalty. In this paper, the constructions and the error correction algorithm for the nonlinear t-error-correcting codes are presented. The architecture of the encoder and the decoder for the codes are shown. The error correcting capabilities, the hardware overhead, the latency and the power consumption for the encoder and the decoder will be analyzed and compared to that of the linear BCH codes to demonstrate the advantages of the proposed codes for error detection and correction in MLC NAND flash memories.
Keywords :
BCH codes; error correction codes; flash memories; logic design; logic gates; nonlinear codes; power consumption; error correction algorithm; error detection; linear BCH codes; multilevel cell NAND flash memories; nonlinear t-error-correcting codes; power consumption; Bit error rate; Computer networks; Decoding; Delay; Error correction codes; Hardware; Laboratories; Portable media players; Power system reliability; Threshold voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on
Conference_Location :
Chicago, IL
Print_ISBN :
978-1-4244-7500-1
Electronic_ISBN :
978-1-4244-7499-8
Type :
conf
DOI :
10.1109/DSN.2010.5545014
Filename :
5545014
Link To Document :
بازگشت