DocumentCode :
3491809
Title :
Kernel covariance image region description for object tracking
Author :
Arif, Omar ; Vela, Patricio Antonio
Author_Institution :
Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
fYear :
2009
fDate :
7-10 Nov. 2009
Firstpage :
865
Lastpage :
868
Abstract :
We propose a nonlinear covariance region descriptor for target tracking. The target object appearance and spatial information is represented using a covariance matrix in a target derived Hilbert space using kernel principal component analysis. A similarity measure is derived, which computes the similarity of a candidate image region to the learned covariance matrix. A variational technique is provided to maximize the similarity measure, which iteratively finds the best matched object region. Tracking performance is demonstrated on a variety of sequences containing noise, occlusions, illumination changes, background clutter, etc.
Keywords :
Hilbert spaces; covariance matrices; feature extraction; image matching; image sequences; iterative methods; object detection; principal component analysis; target tracking; Hilbert space; background clutter; covariance matrix; kernel covariance image region; kernel principal component analysis; object tracking; spatial information representation; target tracking; tracking performance; visual tracking; Background noise; Covariance matrix; Hilbert space; Histograms; Kernel; Lattices; Principal component analysis; Shape; Space technology; Target tracking; Visual tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2009 16th IEEE International Conference on
Conference_Location :
Cairo
ISSN :
1522-4880
Print_ISBN :
978-1-4244-5653-6
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2009.5414297
Filename :
5414297
Link To Document :
بازگشت