DocumentCode :
3493979
Title :
Excitation dependence of photoluminescence linewidth in InAlAs grown on InP substrates by molecular beam epitaxy
Author :
Du, Q.H. ; Yoon, S.F. ; Radhakrishnan, K.
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Inst., Singapore
fYear :
1996
fDate :
26-28 Nov 1996
Firstpage :
148
Lastpage :
153
Abstract :
An experimental investigation is presented on the influence of the laser excitation on the photoluminescence (PL) linewidth in silicon-doped InAlAs layers grown lattice-matched to InP substrates by molecular beam epitaxy (MBE). It was observed that the linewidth decreases with increasing laser excitation power. A model describing an unbalanced migration of photo-generated charge carriers due to the presence of clusters is proposed to explain the effect of the linewidth reduction. Also, the trend of the linewidth decrease becomes more pronounced in InAlAs samples with higher silicon doping concentrations. These samples have broader linewidths which is the result of poorer alloy quality due to the presence of disorder. A similar trend of linewidth reduction was also observed at higher measurement temperatures of 15 and 30 K. Our results show that such measurement of linewidth vs. laser excitation power can be used as a supplementary method for InAlAs material characterization
Keywords :
III-V semiconductors; aluminium compounds; indium compounds; molecular beam epitaxial growth; photoluminescence; segregation; semiconductor doping; semiconductor epitaxial layers; silicon; spectral line breadth; 5 to 30 K; In0.52Al0.48As:Si; InAlAs:Si MBE layers; InP; InP substrates; Si doping concentration dependence; alloy quality; clusters; disorder; laser excitation dependence; linewidth reduction; material characterization; model; molecular beam epitaxy; photo-generated charge carrier migration; photoluminescence linewidth; Indium compounds; Indium phosphide; Laser excitation; Laser modes; Molecular beam epitaxial growth; Photoluminescence; Power lasers; Semiconductor process modeling; Substrates; Temperature measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Semiconductor Electronics, 1996. ICSE '96. Proceedings., 1996 IEEE International Conference on
Conference_Location :
Penang
Print_ISBN :
0-7803-3388-8
Type :
conf
DOI :
10.1109/SMELEC.1996.616472
Filename :
616472
Link To Document :
بازگشت