DocumentCode :
3494206
Title :
Toward realtime side information decoding on multi-core processors
Author :
Momcilovic, Svetislav ; Wang, Yige ; Rane, Shantanu ; Vetro, Anthony
Author_Institution :
Mitsubishi Electr. Res. Labs. (MERL), Cambridge, MA, USA
fYear :
2010
fDate :
4-6 Oct. 2010
Firstpage :
321
Lastpage :
326
Abstract :
Most distributed source coding schemes involve the application of a channel code to the signal and transmission of the resulting syndromes. For low-complexity encoding with superior compression performance, graph-based channel codes such as LDPC codes are used to generate the syndromes. The encoder performs simple XOR operations, while the decoder uses belief propagation (BP) decoding to recover the signal of interest using the syndromes and some correlated side information. We consider parallelization of BP decoding on general-purpose multi-core CPUs. The motivation is to make BP decoding fast enough for realtime applications. We consider three different BP decoding algorithms: Sum-Product BP, Min-Sum BP and Algorithm E. The speedup obtained by parallelizing these algorithms is examined along with the tradeoff against decoding performance. Parallelization is achieved by dividing the received syndrome vectors among different cores, and by using vector operations to simultaneously process multiple check nodes in each core. While Min-Sum BP has intermediate decoding complexity, a “vectorized” version of Min-Sum BP performs nearly as fast as the much simpler Algorithm E with significantly fewer decoding errors. Our experiments indicate that, for the best compromise between speed and performance, the decoder should use Min-Sum BP when the side information is of good quality and Sum-Product BP otherwise.
Keywords :
channel coding; computational complexity; graph theory; multiprocessing systems; source coding; video coding; BP decoding; Min-Sum BP algorithm; Sum-Product BP algorithm; XOR operation; belief propagation decoding; channel code; distributed source coding; general-purpose multicore CPU; graph-based channel code; intermediate decoding complexity; low-complexity encoding; multicore processor; realtime side information decoding; signal recovery; Decoding; Discrete cosine transforms; Encoding; Iterative decoding; Message systems; Table lookup;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia Signal Processing (MMSP), 2010 IEEE International Workshop on
Conference_Location :
Saint Malo
Print_ISBN :
978-1-4244-8110-1
Electronic_ISBN :
978-1-4244-8111-8
Type :
conf
DOI :
10.1109/MMSP.2010.5662040
Filename :
5662040
Link To Document :
بازگشت