Title :
Natural language generation using automatically constructed lexical resources
Author :
Ito, Naho ; Hagiwara, Masafumi
Author_Institution :
Fac. of Sci. & Technol., Keio Univ., Yokohama, Japan
fDate :
July 31 2011-Aug. 5 2011
Abstract :
One of the practical targets of neural network research is to enable conversation ability with humans. This paper proposes a novel natural language generation method using automatically constructed lexical resources. In the proposed method, two lexical resources are employed: Kyoto University´s case frame data and Google N-gram data. Word frequency in case frame can be regarded to be obtained by Hebb´s learning rule. The co-occurence frequency of Google N-gram can be considered to be gained by an associative memory. The proposed method uses words as an input. It generates a sentence from case frames, using Google N-gram as to consider co-occurrence frequency between words. We only use lexical resources which are constructed automatically. Therefore the proposed method has high coverage compared to the other methods using manually constructed templates. We carried out experiments to examine the quality of generated sentences and obtained satisfactory results.
Keywords :
Hebbian learning; natural language processing; neural nets; Google N-gram data; Hebb learning rule; Kyoto University; automatically constructed lexical resources; case frame data; co-occurence frequency; conversation ability; natural language generation method; natural language processing; neural network research; Associative memory; Computer aided software engineering; Estimation; Google; Grammar; Natural languages; Semantics;
Conference_Titel :
Neural Networks (IJCNN), The 2011 International Joint Conference on
Conference_Location :
San Jose, CA
Print_ISBN :
978-1-4244-9635-8
DOI :
10.1109/IJCNN.2011.6033329