DocumentCode :
3496354
Title :
Towards whole transcriptome deconvolution using single-cell data
Author :
Lindsay, James ; Nelson, Craig E. ; Mandoiu, Ion I.
Author_Institution :
Comput. Sci. & Eng., Univ. of Connecticut, Storrs, CT, USA
fYear :
2013
fDate :
12-14 June 2013
Firstpage :
1
Lastpage :
1
Abstract :
Obtaining whole-transcriptome expression profiles of closely related cell types is a daunting task faced by stem-cell biologists. Here we present an approach that utilizes single-cell qPCR probing of a small number of genes to aid in the deconvolution of whole-transcriptome profiles of mixed samples.
Keywords :
cellular biophysics; genetics; daunting task; genes; single-cell data; single-cell qPCR probing; stem-cell biologists; whole transcriptome deconvolution; whole-transcriptome expression profiles; Biological cells; Computational modeling; Computer science; Deconvolution; Educational institutions; Gene expression;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Advances in Bio and Medical Sciences (ICCABS), 2013 IEEE 3rd International Conference on
Conference_Location :
New Orleans, LA
Type :
conf
DOI :
10.1109/ICCABS.2013.6629234
Filename :
6629234
Link To Document :
بازگشت