DocumentCode :
3496591
Title :
Multi-objective evolutionary optimization of exemplar-based classifiers: A PNN test case
Author :
Rubio, Talitha ; Zhang, Tiantian ; Georgiopoulos, Michael ; Kaylani, Assem
Author_Institution :
Dept. of EECS, Univ. of Central Florida, Orlando, FL, USA
fYear :
2011
fDate :
July 31 2011-Aug. 5 2011
Firstpage :
1722
Lastpage :
1731
Abstract :
In this paper the major principles to effectively design a parameter-less, multi-objective evolutionary algorithm that optimizes a population of probabilistic neural network (PNN) classifier models are articulated; PNN is an example of an exemplar-based classifier. These design principles are extracted from experiences, discussed in this paper, which guided the creation of the parameter-less multi-objective evolutionary algorithm, named MO-EPNN (multi-objective evolutionary probabilistic neural network). Furthermore, these design principles are also corroborated by similar principles used for an earlier design of a parameter-less, multi-objective genetic algorithm used to optimize a population of ART (adaptive resonance theory) models, named MO-GART (multi-objective genetically optimized ART); the ART classifier model is another example of an exemplar-based classifier model. MO-EPNN´s performance is compared to other popular classifier models, such as SVM (Support Vector Machines) and CART (Classification and Regression Trees), as well as to an alternate competitive method to genetically optimize the PNN. These comparisons indicate that MO-EPNN´s performance (generalization on unseen data and size) compares favorably to the aforementioned classifier models and to the alternate genetically optimized PNN approach. MO-EPPN´s good performance, and MO-GART´s earlier reported good performance, both of whose design relies on the same principles, gives credence to these design principles, delineated in this paper.
Keywords :
adaptive resonance theory; evolutionary computation; neural nets; pattern classification; probability; ART classifier model; PNN classifier models; adaptive resonance theory; exemplar-based classifiers; multiobjective evolutionary optimization; multiobjective genetically optimized ART; parameterless multi-objective evolutionary algorithm; probabilistic neural network; Biological cells; Evolutionary computation; Optimization; Probability; Subspace constraints; Training; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks (IJCNN), The 2011 International Joint Conference on
Conference_Location :
San Jose, CA
ISSN :
2161-4393
Print_ISBN :
978-1-4244-9635-8
Type :
conf
DOI :
10.1109/IJCNN.2011.6033432
Filename :
6033432
Link To Document :
بازگشت