Title :
Divide & Conquer Classification and Optimization by Genetic Algorithm
Author :
Parvin, Hamid ; Alizadeh, Hosein ; Moshki, Mohsen ; Minaei-Bidgoli, Behrouz ; Mozayani, Naser
Author_Institution :
Dept. of Comput. Eng., Iran Univ. of Sci. & Technol., Tehran
Abstract :
In this paper, a new approach for improving the performance of recognition system is proposed. The main idea of proposed approach is using pairwise classifiers. Firstly, a multi class classifier is trained and its confusion matrix is derived. Then, the error between metaclasses is derived. In each level, our objective is to minimize the error between metaclasses in the evaluation dataset. This method is similar to creation of a binary tree. Each time the data is divided into two metaclasses, until there is no node greater than one class. Each node is equal to one classifier that distinguishes the classes of the left and right nodes. The genetic algorithm makes sure that we have the minimum error in confusion matrix. The Multi Layer Perceptron and K-Nearest Neighbor are used as base classifiers. Experimental results demonstrate improved accuracy on a Farsi digit handwritten dataset.
Keywords :
divide and conquer methods; genetic algorithms; matrix algebra; multilayer perceptrons; pattern classification; confusion matrix; divide and conquer classification; genetic algorithm; k-nearest neighbor; multiclass classifier; multilayer perceptron; pairwise classifier; Binary trees; Classification tree analysis; Data mining; Decision trees; Genetic algorithms; Genetic engineering; Humans; Information technology; Nearest neighbor searches; Pattern recognition; Binary Classification; Combinational Classification; Neural Network Ensembles; Tree Classification;
Conference_Titel :
Convergence and Hybrid Information Technology, 2008. ICCIT '08. Third International Conference on
Conference_Location :
Busan
Print_ISBN :
978-0-7695-3407-7
DOI :
10.1109/ICCIT.2008.335