Title :
Parameter selection for smoothing splines using Stein´s Unbiased Risk Estimator
Author :
Seifzadeh, Sepideh ; Rostami, Mohammad ; Ghodsi, Ali ; Karray, Fakhreddine
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
fDate :
July 31 2011-Aug. 5 2011
Abstract :
A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein´s Unbiased Risk Estimator (SURE). This approach employs Newton´s method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets.
Keywords :
regression analysis; smoothing methods; splines (mathematics); Stein unbiased risk estimator; parameter selection; smoothing parameter; smoothing splines; spline regression function; Computational modeling; Data models; Polynomials; Smoothing methods; Spline; Training; Training data;
Conference_Titel :
Neural Networks (IJCNN), The 2011 International Joint Conference on
Conference_Location :
San Jose, CA
Print_ISBN :
978-1-4244-9635-8
DOI :
10.1109/IJCNN.2011.6033577