DocumentCode :
3500448
Title :
Research on prediction model of optimal coagulant dosage in water purifying plant based on nerual network
Author :
Song, Zheying ; Zhao, Yingbao ; Song, Xueling ; Liu, Chaoying
Author_Institution :
Coll. of Electr. Eng. & Informational Sci., Hebei Univ. of Sci. of Technol., Shijiazhuang, China
Volume :
4
fYear :
2009
fDate :
8-9 Aug. 2009
Firstpage :
258
Lastpage :
261
Abstract :
Coagulant dosing process is an important part in water treatment plan, it directly affects the water quality and operating costs of production. It is very difficult to set up its mathematical model accurately basing on its reactive mechanism at present. Factors that affect the coagulation effect are analyzed in this paper, then a BP neural network prediction model of coagulant dosage is established. A improved BP algorithm - LM algorithm is used to train the neural network, it can improve the data´s convergent speed. Experimental results show that the prediction accuracy of the BP neural network model is very high. The online predictive control of coagulant dosage can be made basing on this model, so it can optimize the coagulant dosage.
Keywords :
backpropagation; coagulation; neural nets; predictive control; water treatment; BP neural network prediction model; coagulant dosing process; mathematical model; online predictive control; water purifying plant; Chemicals; Coagulation; Computer networks; Filters; Image storage; Mathematical model; Neural networks; Predictive models; Reservoirs; Water resources; BP neural network; Coagulant dosage; LM algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computing, Communication, Control, and Management, 2009. CCCM 2009. ISECS International Colloquium on
Conference_Location :
Sanya
Print_ISBN :
978-1-4244-4247-8
Type :
conf
DOI :
10.1109/CCCM.2009.5267728
Filename :
5267728
Link To Document :
بازگشت