DocumentCode :
3501661
Title :
On codes that correct asymmetric errors with graded magnitude distribution
Author :
Yaakobi, Eitan ; Siegel, Paul H. ; Vardy, Alexander ; Wolf, Jack K.
Author_Institution :
Univ. of California, San Diego, La Jolla, CA, USA
fYear :
2011
fDate :
July 31 2011-Aug. 5 2011
Firstpage :
1056
Lastpage :
1060
Abstract :
In multi-level flash memories, the dominant cell errors are asymmetric with limited-magnitude. With such an error model in mind, Cassuto et al. recently developed bounds and constructions for codes correcting t asymmetric errors with magnitude no more than ℓ. However, a more refined model of these memory devices reflects the fact that typically only a small number of errors have large magnitude while the remainder are of smaller magnitude. In this work, we study such an error model, in which at most t1 errors of maximum magnitude ℓ1 and at most t2 errors of maximum magnitude ℓ2, with ℓ1 <; ℓ2, can occur. We adapt the analysis and code construction of Cassuto, et al. for the refined error model and assess the relative efficiency of the new codes. We then consider in more detail specific constructions for the case where t1 = t2 = 1, ℓ1 = 1, and ℓ2 >; 1.
Keywords :
error correction codes; flash memories; ℓ2 maximum magnitude; asymmetric error correction codes; graded magnitude distribution; memory devices; multilevel flash memory; refined error model; Ash; Decoding; Encoding; Error correction codes; Measurement; Redundancy; Systematics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
Conference_Location :
St. Petersburg
ISSN :
2157-8095
Print_ISBN :
978-1-4577-0596-0
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2011.6033692
Filename :
6033692
Link To Document :
بازگشت