DocumentCode :
3501685
Title :
On L1-distance error control codes
Author :
Tallini, Luca G. ; Bose, Bella
Author_Institution :
Dip. di Sci. della Comun., Univ. degli Studi di Teramo, Teramo, Italy
fYear :
2011
fDate :
July 31 2011-Aug. 5 2011
Firstpage :
1061
Lastpage :
1065
Abstract :
This paper gives some theory and design of efficient codes capable of controlling (i. e., correcting/detecting/correcting erasure) errors measured under the L1 distance defined over m-ary words, 2 ≤ m ≤ +∞. We give the combinatorial characterizations of such codes, some general code designs and the efficient decoding algorithms. Then, we give a class of linear and systematic m-ary codes, m = sp with s∈IN and p a prime, which are capable of controlling d ≤ p-1 errors. If n and k∈IN are respectively the length and dimension of a BCH code over GF(p) with minimum Hamming distance d + 1 then the new codes have length n and k´ = k + r logm s information digits.
Keywords :
BCH codes; combinatorial mathematics; decoding; error correction codes; BCH code; L1-distance error control codes; combinatorial characterizations; decoding algorithms; general code designs; information digits; linear M-ary codes; systematic M-ary codes; Decoding; Encoding; Error correction; Measurement; Polynomials; Zinc; Z-channel; asymmetric/unidirectional/symmetric errors; error control codes; flash memories; insertion and deletion errors; m-ary alphabet; repetition errors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
Conference_Location :
St. Petersburg
ISSN :
2157-8095
Print_ISBN :
978-1-4577-0596-0
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2011.6033693
Filename :
6033693
Link To Document :
بازگشت