DocumentCode :
3502418
Title :
Novel EFM-KNN classifier and a new color descriptor for image classification
Author :
Verma, Abhishek ; Liu, Chengjun
Author_Institution :
Dept. of Comput. Sci., New Jersey Inst. of Technol., Newark, NJ, USA
fYear :
2011
fDate :
15-16 April 2011
Firstpage :
1
Lastpage :
6
Abstract :
We propose a new CGSF+PHOG descriptor and perform image classification using a novel EFM-KNN classifier, which combines the Enhanced Fisher Model (EFM) and the K Nearest Neighbor (KNN) decision rule. We integrate the oRGB-SIFT descriptor with other color SIFT features to produce the Color SIFT Fusion (CSF) and the Color Grayscale SIFT Fusion (CGSF) descriptors. The CGSF is integrated to the PHOG to obtain the novel CGSF+PHOG descriptor. The effectiveness of the proposed new descriptor and the classification method is evaluated using two grand challenge datasets: the Oxford flower database and the MIT scene database. The classification results using the EFM-KNN classifier show that (i) the CGSF+PHOG descriptor improves recognition performance upon other descriptors; and (ii) the oRGB-SIFT, the CSF, and the CGSF perform better than the other color SIFT descriptors.
Keywords :
image classification; image colour analysis; CGSF+PHOG descriptor; EFM-KNN classifier; MIT scene database; Oxford flower database; color SIFT descriptor; color SIFT feature; color SIFT fusion; color descriptor; color grayscale SIFT fusion descriptor; enhanced fisher model; image classification; k nearest neighbor decision rule; Eigenvalues and eigenfunctions; Gray-scale; Image classification; Image color analysis; Image recognition; Principal component analysis; Shape; CGSF+PHOG descriptor; Color Grayscale SIFT Fusion (CGSF); Color SIFT Fusion (CSF); EFM-KNN classifier; image classification; oRGB-SIFT descriptor;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wireless and Optical Communications Conference (WOCC), 2011 20th Annual
Conference_Location :
Newark, NJ
Print_ISBN :
978-1-4577-0453-6
Type :
conf
DOI :
10.1109/WOCC.2011.5872302
Filename :
5872302
Link To Document :
بازگشت