Title :
Influence function based Gaussianity tests for detection of microcalcifications in mammogram images
Author :
Gurcan, M. Nafi ; Yardimci, Yasemin ; Enis Cetin, A.
Author_Institution :
Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey
Abstract :
In this paper, computer-aided diagnosis of microcalcifications in mammogram images is considered. Microcalcification clusters are an early sign of breast cancer. Microcalcifications appear as single bright spots in mammogram images. We propose an effective method for the detection of these abnormalities. The first step of this method is two-dimensional adaptive filtering. The filtering produces an error image which is divided into overlapping square regions. In each square region, a Gaussianity test is applied. Since microcalcifications have an impulsive appearance, they are treated as outliers. In regions with no microcalcifications, the distribution of the error image is almost Gaussian, on the other hand, in regions containing microcalcification clusters, the distribution deviates from Gaussianity. Using the theory of the influence function and sensitivity curves, we develop a Gaussianity test. Microcalcification clusters are detected using the Gaussianity test. Computer simulation studies are presented
Keywords :
cancer; mammography; medical image processing; breast cancer; computer-aided diagnosis; error image; influence function; mammogram images; microcalcifications; sensitivity curves; two-dimensional adaptive filtering; Adaptive filters; Breast cancer; Computer aided diagnosis; Computer errors; Computer simulation; Filtering; Gaussian distribution; Gaussian processes; Pixel; Testing;
Conference_Titel :
Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on
Conference_Location :
Kobe
Print_ISBN :
0-7803-5467-2
DOI :
10.1109/ICIP.1999.817145