Title : 
On the treewidth of MDS and Reed-Muller codes
         
        
            Author : 
Kashyap, Navin ; Thangaraj, Andrew
         
        
            Author_Institution : 
Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India
         
        
        
            fDate : 
July 31 2011-Aug. 5 2011
         
        
        
        
            Abstract : 
The treewidth of a linear code is the least constraint complexity of any of its cycle-free graphical realizations. This notion provides a useful parametrization of the maximum-likelihood decoding complexity for linear codes. In this paper, we compute exact expressions for the treewidth of maximum distance separable codes, and first- and second-order Reed-Muller codes. These results constitute the only known explicit expressions for the treewidth of algebraic codes.
         
        
            Keywords : 
Reed-Muller codes; algebraic codes; maximum likelihood decoding; tree codes; MDS; Reed Muller codes; cycle free graphical realizations; least constraint complexity; linear codes; maximum distance separable codes; maximum likelihood decoding complexity; treewidth; Complexity theory; Hamming weight; Indexes; Linear code; Maximum likelihood decoding; Minimization; Particle separators;
         
        
        
        
            Conference_Titel : 
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
         
        
            Conference_Location : 
St. Petersburg
         
        
        
            Print_ISBN : 
978-1-4577-0596-0
         
        
            Electronic_ISBN : 
2157-8095
         
        
        
            DOI : 
10.1109/ISIT.2011.6033887