DocumentCode :
350689
Title :
An instrumental variable approach for identification of hidden Markov models
Author :
Thorne, J.S. ; Moore, John B.
Author_Institution :
Dept. of Syst. Eng., Australian Nat. Univ., ACT, Australia
Volume :
1
fYear :
1999
fDate :
1999
Firstpage :
103
Abstract :
In this paper we derive recursive filters for both the online and off-line identification of hidden Markov models (HMMs). The identification is achieved by taking conditional mean estimates of certain summation non-linear functions of the states and measurements and using these values to estimate the parameters of the system. This instrumental variable method we propose offers the possibility of improved parameter estimation when the state of the HMM is correlated with the system noise
Keywords :
hidden Markov models; parameter estimation; recursive filters; HMM; conditional mean estimates; hidden Markov models; identification; instrumental variable approach; parameter estimation; recursive filters; summation nonlinear functions; system noise; Biomedical signal processing; Digital signal processing; Filters; Hidden Markov models; Instruments; Parameter estimation; Recursive estimation; Signal processing algorithms; Speech recognition; State estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing and Its Applications, 1999. ISSPA '99. Proceedings of the Fifth International Symposium on
Conference_Location :
Brisbane, Qld.
Print_ISBN :
1-86435-451-8
Type :
conf
DOI :
10.1109/ISSPA.1999.818123
Filename :
818123
Link To Document :
بازگشت