Title :
A geodesic voting method for the segmentation of tubular tree and centerlines
Author :
Rouchdy, Youssef ; Cohen, Laurent D.
Author_Institution :
CEREMADE, Univ. Paris Dauphine, Paris, France
fDate :
March 30 2011-April 2 2011
Abstract :
This paper presents a geodesic voting method to segment tree structures, such as cardiac or cerebral blood vessels. Many authors have used minimal cost paths, or similarly geodesics relative to a weight potential P, to find a vessel between two end points. Our goal focuses on the use of a set of such geodesic paths for finding a tubular tree structure, using minimal interaction. This work adapts the geodesic voting method that we have introduced for the segmentation of thin tree structures to the segmentation of centerlines and tubular trees. The original approach of geodesic voting consists in computing geodesics from a set of end points scattered in the image to a given source point. The target structure corresponds to image points with a high geodesic density. Since the potential takes low values on the tree structure, geodesics will locate preferably on this structure and thus the geodesic density should be high. Geodesic voting method gives a good approximation of the localization of the tree branches, but it does not allow to extract the tubular aspect of the tree. Furthermore, geodesic voting does not guarantee that the extracted tree corresponds to the centerline of the tree. Here, we introduce an explicit constraint that moves the high geodesic density to the centerline of the tree and simultaneously approximates the localization of the boundary of the tubular structure. We show results of the segmentation with this approach on 2D angiogram images. This approach can be extended to 3D images in a straight forward manner.
Keywords :
angiocardiography; blood vessels; image segmentation; medical image processing; 2D angiogram images; cardiac blood vessels; centerline segmentation; cerebral blood vessels; geodesic density; geodesic voting method; image points; minimal interaction; tubular tree segmentation; tubular tree structure; Biomedical imaging; Equations; Image segmentation; Mathematical model; Periodic structures; Pixel; Three dimensional displays; Fast Marching; Geodesic voting; minimal paths; tree structure segmentation; vessels segmentation;
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on
Conference_Location :
Chicago, IL
Print_ISBN :
978-1-4244-4127-3
Electronic_ISBN :
1945-7928
DOI :
10.1109/ISBI.2011.5872566