DocumentCode :
350964
Title :
Natural gradient matrix momentum
Author :
Scarpetta, Silvia ; Rattray, Magnus ; Saad, David
Author_Institution :
Dipartimento di Fisica, Salerno Univ., Italy
Volume :
1
fYear :
1999
fDate :
1999
Firstpage :
43
Abstract :
Natural gradient learning is an efficient and principled method for improving online learning. In practical applications there will be an increased cost required in estimating and inverting the Fisher information matrix. We propose to use the matrix momentum algorithm in order to carry out efficient inversion and study the efficacy of a single step estimation of the Fisher information matrix. We analyse the proposed algorithms in a two-layer neural network, using a statistical mechanics framework which allows one to describe analytically the learning dynamics, and compare performance with true natural gradient learning and standard gradient descent
Keywords :
feedforward neural nets; Fisher information matrix; matrix momentum; multilayer neural network; natural gradient learning; online learning; statistical mechanics;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470)
Conference_Location :
Edinburgh
ISSN :
0537-9989
Print_ISBN :
0-85296-721-7
Type :
conf
DOI :
10.1049/cp:19991082
Filename :
819539
Link To Document :
بازگشت