DocumentCode :
350974
Title :
Kernel-dependent support vector error bounds
Author :
Scholkopf, Bernhard ; Shawe-Taylor, John ; Smola, Alex J. ; Williamson, Robert C.
Author_Institution :
GMD FIRST, Berlin, Germany
Volume :
1
fYear :
1999
fDate :
1999
Firstpage :
103
Abstract :
Model selection in support vector machines is usually carried out by minimizing the quotient of the radius of the smallest enclosing sphere of the data and the observed margin on the training set. We provide a new criterion taking the distribution within that sphere into account by considering the eigenvalue distribution of the Gram matrix of the data. Experimental results on real world data show that this new criterion provides a good prediction of the shape of the curve relating generalization error to kernel width
Keywords :
neural nets; Gram matrix; eigenvalue distribution; error bounds; kernel; learning; neural nets; support vector machines;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470)
Conference_Location :
Edinburgh
ISSN :
0537-9989
Print_ISBN :
0-85296-721-7
Type :
conf
DOI :
10.1049/cp:19991092
Filename :
819549
Link To Document :
بازگشت