Title :
Segmentation of M-FISH Images for improved classification of chromosomes with an adaptive fuzzy c-means clustering algorithm
Author :
Cao, Hongbao ; Wang, Yu-Ping
Author_Institution :
Dept. of Biomed. Eng., Tulane Univ., New Orleans, LA, USA
fDate :
March 30 2011-April 2 2011
Abstract :
An adaptive fuzzy c-means (AFCM) clustering based algorithm was developed and applied to the segmentation and classification of multi-color fluorescence in situ hybridization (M-FISH) images, which can be used to detect chromosomal abnormalities for cancer and genetic disease diagnosis. The algorithm improves the classical fuzzy c-means (FCM) clustering algorithm by introducing a gain field, which models and corrects intensity inhomogeneities caused by microscope imaging system, flairs of targets (chromosomes) and uneven hybridization of DNA. Other than directly simulating the inhomogeneousely distributed intensities over the image, the gain field regulates centers of each intensity cluster. The algorithm has been tested on an M-FISH database that we established, demonstrating improved performance in both segmentation and classification. When compared with other fuzzy c-means clustering based algorithms and a recently reported region-based segmentation and classification algorithm, our method gave the lowest segmentation and classification error, which will contribute to improved diagnosis of genetic diseases and cancers.
Keywords :
DNA; biomedical optical imaging; cancer; fluorescence; fuzzy set theory; genetics; image classification; image segmentation; medical image processing; pattern clustering; AFCM clustering based algorithm; DNA hybridization; M-FISH image segmentation; adaptive fuzzy c-means clustering algorithm; cancer diagnosis; chromosome classification; chromosomes; gain field; genetic disease diagnosis; intensity inhomogeneities; microscope imaging system; multicolor fluorescence in situ hybridization images chromosomal abnormalities; Accuracy; Biological cells; Classification algorithms; Clustering algorithms; Databases; Image segmentation; Pixel; Adaptive fuzzy c-means clustering; background correction; chromosome image classification; image segmentation;
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on
Conference_Location :
Chicago, IL
Print_ISBN :
978-1-4244-4127-3
Electronic_ISBN :
1945-7928
DOI :
10.1109/ISBI.2011.5872671