Title :
Estimation for finite parameter schemes
Author :
Lii, K.S. ; Rosenblatt, M.
Author_Institution :
California Univ., Riverside, CA, USA
Abstract :
The object is to indicate the character of results for the approximate maximum likelihood estimation of parameters in nonminimum phase nonGaussian finite parameter schemes. The estimates are asymptotically normal under appropriate smoothness and positivity conditions on the probability density function of the generating independent random variables. The character of the asymptotic covariance matrix is indicated. In the truly nonminimum phase nonGaussian case one does not have consistency using the classical estimates using a Gaussian likelihood.
Keywords :
approximation theory; maximum likelihood estimation; parameter estimation; Gaussian likelihood; approximate maximum likelihood estimation; asymptotic covariance matrix; asymptotically normal estimates; independent random variables; nonminimum phase nonGaussian finite parameter; parameter estimation; positivity conditions; probability density function; smoothness conditions; Covariance matrix; Deconvolution; Density functional theory; Equations; Maximum likelihood estimation; Parameter estimation; Phase estimation; Polynomials; Probability density function; Random variables;
Conference_Titel :
Higher-Order Statistics, 1993., IEEE Signal Processing Workshop on
Conference_Location :
South Lake Tahoe, CA, USA
Print_ISBN :
0-7803-1238-4
DOI :
10.1109/HOST.1993.264582