DocumentCode :
3511767
Title :
K-SVD for HARDI denoising
Author :
Patel, Vishal ; Shi, Yonggang ; Thompson, Paul M. ; Toga, Arthur W.
Author_Institution :
Lab. of Neuro Imaging, Univ. of California, Los Angeles, CA, USA
fYear :
2011
fDate :
March 30 2011-April 2 2011
Firstpage :
1805
Lastpage :
1808
Abstract :
Noise is an important concern in high-angular resolution diffusion imaging studies because it can lead to errors in downstream analyses of white matter structure. To address this issue, we investigate a new approach for denoising diffusion-weighted data sets based on the K-SVD algorithm. We analyze its characteristics using both simulated and biological data and compare its performance with existing methods. Our results show that K-SVD provides robust and effective noise reduction and is practical for use in high-volume applications.
Keywords :
biomedical MRI; medical image processing; HARDI denoising; K-SVD algorithm; biological data; denoising diffusion-weighted data sets; high-angular resolution diffusion imaging; noise reduction; Biology; Dictionaries; Encoding; Noise; Noise reduction; TV; Training; Magnetic resonance imaging; algorithms; brain; diffusion tensor imaging; noise reduction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on
Conference_Location :
Chicago, IL
ISSN :
1945-7928
Print_ISBN :
978-1-4244-4127-3
Electronic_ISBN :
1945-7928
Type :
conf
DOI :
10.1109/ISBI.2011.5872757
Filename :
5872757
Link To Document :
بازگشت