DocumentCode :
3512384
Title :
A construction of quantum LDPC codes from Cayley graphs
Author :
Couvreur, Alain ; Delfosse, Nicolas ; Zemor, Gilles
Author_Institution :
Inst. de Math. de Bordeaux, Univ. Bordeaux 1, Talence, France
fYear :
2011
fDate :
July 31 2011-Aug. 5 2011
Firstpage :
643
Lastpage :
647
Abstract :
We study a construction of Quantum LDPC codes proposed by MacKay, Mitchison and Shokrollahi in the draft [6]. It is based on the Cayley graph of F2n together with a set of generators regarded as the columns of the parity-check matrix of a classical code. We give a general lower bound on the minimum distance of the quantum code in O(dn2) where d is the minimum distance of the classical code. When the classical code is the [n, 1, n] repetition code, we are able to compute the exact parameters of the associated quantum code which are [[2n-1, 2 n/2, 2 n/2 -1]].
Keywords :
graph theory; matrix algebra; parity check codes; Cayley graphs; classical code; low density parity check codes; parity-check matrix; quantum LDPC codes; repetition code; Cascading style sheets; Error correction codes; Kernel; Parity check codes; Quantum computing; Quantum mechanics; Sparse matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
Conference_Location :
St. Petersburg
ISSN :
2157-8095
Print_ISBN :
978-1-4577-0596-0
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2011.6034209
Filename :
6034209
Link To Document :
بازگشت