Title :
A construction of quantum LDPC codes from Cayley graphs
Author :
Couvreur, Alain ; Delfosse, Nicolas ; Zemor, Gilles
Author_Institution :
Inst. de Math. de Bordeaux, Univ. Bordeaux 1, Talence, France
fDate :
July 31 2011-Aug. 5 2011
Abstract :
We study a construction of Quantum LDPC codes proposed by MacKay, Mitchison and Shokrollahi in the draft [6]. It is based on the Cayley graph of F2n together with a set of generators regarded as the columns of the parity-check matrix of a classical code. We give a general lower bound on the minimum distance of the quantum code in O(dn2) where d is the minimum distance of the classical code. When the classical code is the [n, 1, n] repetition code, we are able to compute the exact parameters of the associated quantum code which are [[2n-1, 2 n/2, 2 n/2 -1]].
Keywords :
graph theory; matrix algebra; parity check codes; Cayley graphs; classical code; low density parity check codes; parity-check matrix; quantum LDPC codes; repetition code; Cascading style sheets; Error correction codes; Kernel; Parity check codes; Quantum computing; Quantum mechanics; Sparse matrices;
Conference_Titel :
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
Conference_Location :
St. Petersburg
Print_ISBN :
978-1-4577-0596-0
Electronic_ISBN :
2157-8095
DOI :
10.1109/ISIT.2011.6034209