DocumentCode :
3512636
Title :
Constructions of bent functions on the minimal distance from the quadratic bent function
Author :
Kolomeec, Nikolay
Author_Institution :
Dept. of Inf. Technol., Novosibirsk State Univ., Novosibirsk, Russia
fYear :
2011
fDate :
July 31 2011-Aug. 5 2011
Firstpage :
693
Lastpage :
697
Abstract :
In this paper we study how to construct new bent functions by slight modifications of the initial one. The answer to this question is directly connected to the studying of bent functions on the minimal Hamming distance from the given bent function. Here we constructively describe all bent functions on the minimal distance from the quadratic bent function and calculate their exact number. We get a lower bound for the number of bent functions on the minimal distance from a bent function of Maiorana-McFarland type. We present several facts and hypotheses on the maximal number of bent functions that can be obtained in this way.
Keywords :
Boolean functions; Boolean function; Maiorana-McFarland type function; minimal Hamming distance; minimal distance; quadratic bent function; Boolean functions; Equations; Information theory; Mathematical model; Symmetric matrices; Vectors; Zinc;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on
Conference_Location :
St. Petersburg
ISSN :
2157-8095
Print_ISBN :
978-1-4577-0596-0
Electronic_ISBN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2011.6034220
Filename :
6034220
Link To Document :
بازگشت