DocumentCode :
3514241
Title :
Products of experts
Author :
Hinton, Geoffrey E.
Author_Institution :
Gatsby Comput. Neurosci. Unit, Univ. Coll. London, UK
Volume :
1
fYear :
1999
fDate :
1999
Firstpage :
1
Abstract :
It is possible to combine multiple probabilistic models of the same data by multiplying the probabilities together and then renormalizing. This is a very efficient way to model high-dimensional data which simultaneously satisfies many different low dimensional constraints. Each individual expert model can focus on giving high probability to data vectors that satisfy just one of the constraints. Data vectors that satisfy this one constraint but violate other constraints will be ruled out by their low probability under the other expert models. Training a product of models appears difficult because, in addition to maximizing the probabilities that the individual models assign to the observed data, it is necessary to make the models disagree on unobserved regions of the data space. However, if the individual models are tractable there is a fairly efficient way to train a product of models. This training algorithm suggests a biologically plausible way of learning neural population codes
Keywords :
neural nets; constraints; data space; data vectors; expert model; learning; neural networks; probabilistic models; probability; renormalization;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470)
Conference_Location :
Edinburgh
ISSN :
0537-9989
Print_ISBN :
0-85296-721-7
Type :
conf
DOI :
10.1049/cp:19991075
Filename :
819532
Link To Document :
بازگشت