DocumentCode :
3515105
Title :
Parameter estimation of non-Rayleigh RCS models for SAR images based on the Mellin transformation
Author :
Sun, Zengguo ; Han, Chongzhao
Author_Institution :
Sch. of Electron. & Inf. Eng., Xi´´an Jiaotong Univ., Xian
fYear :
2009
fDate :
19-24 April 2009
Firstpage :
1081
Lastpage :
1084
Abstract :
The Mellin transformation-based method is developed to estimate the parameters of non-Rayleigh radar cross section (RCS) models for synthetic aperture radar (SAR) images from the observed image. Models investigated include heavy-tailed Rayleigh and Weibull. For each model, we consider the three kinds of images: intensity, square-root of intensity, and multi-look averaged amplitude. Using the Mellin transformation, we derive the analytical expressions of the first two second-kind cumulants for speckle and RCS respectively, and obtain the estimators according to the multiplicative model of SAR images and the Mellin convolution. Results of parameter estimation from Monte Carlo simulation and real SAR images demonstrate that the proposed estimators, which are easy to implement in the form of closed expressions, are efficient in estimating the parameters of non-Rayleigh RCS models from the observed SAR images.
Keywords :
Monte Carlo methods; Weibull distribution; convolution; parameter estimation; radar cross-sections; radar imaging; synthetic aperture radar; Mellin convolution; Mellin transformation; Monte Carlo simulation; SAR images; heavy-tailed Rayleigh; heavy-tailed Weibull; multiplicative model; non-Rayleigh RCS models; non-Rayleigh radar cross section models; observed image; parameter estimation; second-kind cumulants; synthetic aperture radar images; Convolution; Image analysis; Image resolution; Layout; Parameter estimation; Radar cross section; Radar imaging; Radar scattering; Speckle; Synthetic aperture radar; Mellin transformation; Monte Carlo simulation; Synthetic aperture radar (SAR) images; non-Rayleigh RCS model; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1520-6149
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2009.4959775
Filename :
4959775
Link To Document :
بازگشت