Title :
Sparse summarization of robotic grasping data
Author :
Hjelm, Martin ; Ek, Carl Henrik ; Detry, Renaud ; Kjellstrom, Hedvig ; Kragic, Danica
Author_Institution :
Perception Lab., KTH R. Inst. of Technol., Stockholm, Sweden
Abstract :
We propose a new approach for learning a summarized representation of high dimensional continuous data. Our technique consists of a Bayesian non-parametric model capable of encoding high-dimensional data from complex distributions using a sparse summarization. Specifically, the method marries techniques from probabilistic dimensionality reduction and clustering. We apply the model to learn efficient representations of grasping data for two robotic scenarios.
Keywords :
Bayes methods; data reduction; data structures; humanoid robots; learning (artificial intelligence); pattern clustering; Bayesian nonparametric model; high dimensional continuous data representation; probabilistic dimensionality clustering; probabilistic dimensionality reduction; sparse robotic grasping data summarization; Data models; Encoding; Grasping; Kernel; Optimization; Robots; Shape;
Conference_Titel :
Robotics and Automation (ICRA), 2013 IEEE International Conference on
Conference_Location :
Karlsruhe
Print_ISBN :
978-1-4673-5641-1
DOI :
10.1109/ICRA.2013.6630707