Title :
Discovering Frequent Patterns of Functional Associations in Protein Interaction Networks for Function Prediction
Author :
Cho, Young-Rae ; Zhang, Aidong
Author_Institution :
Dept. of Comput. Sci., State Univ. of New York, Buffalo, NY
Abstract :
Predicting function from protein interaction networks has been challenging because of the intricate functional relationships among proteins. Most of the previous function prediction methods depend on the neighborhood of or the connected paths to known proteins, and remain low in accuracy. In this paper, we propose a novel approach for function prediction by detecting frequent patterns of functional associations in a protein interaction network. A set of functions that a protein performs is assigned into the corresponding node as a label. A functional association pattern is then represented as a labeled subgraph. Our FASPAM (frequent functional association pattern mining) algorithm efficiently finds the patterns that occur frequently in the network. It iteratively increases the size of frequent patterns by one node at a time by selective joining, and simplifies the network by a priori pruning. Using the yeast protein interaction network extracted from DIP, the FASPAM algorithm found more than 1,400 frequent patterns. By leave-one-out cross validation, our algorithm predicted functions from the frequent patterns with the accuracy of 86%, which is higher than the results from most previous methods.
Keywords :
bioinformatics; data mining; graph theory; iterative methods; microorganisms; pattern classification; proteins; proteomics; PIN simplification; a priori pruning; frequent FASPAM algorithm; frequent pattern size; functional association pattern detection; functional association pattern mining; iterative process; labeled subgraph; leave one out cross validation; protein function prediction; protein interaction networks; selective joining; yeast PIN; Bioinformatics; Computer science; Electronics packaging; Fungi; Iterative algorithms; Prediction algorithms; Prediction methods; Proteins; Sampling methods; USA Councils; function prediction; protein interaction networks; protein-protein interactions;
Conference_Titel :
Bioinformatics and Biomedicine, 2008. BIBM '08. IEEE International Conference on
Conference_Location :
Philadelphia, PA
Print_ISBN :
978-0-7695-3452-7
DOI :
10.1109/BIBM.2008.21