DocumentCode :
3519374
Title :
A field evaluation of the potential for creep in thermoplastic encapsulant materials
Author :
Kempe, M.D. ; Miller, D.C. ; Wohlgemuth, J.H. ; Kurtz, Sarah R. ; Moseley, J.M. ; Shah, Q. ; Tamizhmani, G. ; Sakurai, Kimio ; Inoue, M. ; Doi, Toshiya ; Masuda, Atsushi ; Samuels, S.L. ; Vanderpan, C.E.
Author_Institution :
Nat. Renewable Energy Lab., Golden, CO, USA
fYear :
2012
fDate :
3-8 June 2012
Abstract :
There has been recent interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically crosslinked materials, e.g., ethylene-vinyl acetate. The related motivations include the desire to: reduce lamination time or temperature; use less moisture-permeable materials; use materials with better corrosion characteristics or with improved electrical resistance. However, the use of any thermoplastic material in a high-temperature environment raises safety and performance concerns, as the standardized tests currently do not expose the modules to temperatures in excess of 85°C, though fielded modules may experience temperatures above 100°C. Here we constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials of which only two were designed to chemically crosslink. One module set was exposed outdoors with insulation on the back side in Arizona in the summer, and an identical set was exposed in environmental chambers. High precision creep measurements (±20 μm) and performance measurements indicate that despite many of these polymeric materials being in the melt state during outdoor deployment, very little creep was seen because of their high viscosity, temperature heterogeneity across the modules, and the formation of chemical crosslinks in many of the encapsulants as they aged. In the case of the crystalline silicon modules, the physical restraint of the backsheet reduced the creep further.
Keywords :
elemental semiconductors; semiconductor thin films; silicon; solar cells; Arizona; Si; chemical crosslinks; chemically crosslinked materials; crystalline-silicon modules; environmental chambers; ethylene-vinyl acetate; glass/encapsulation/glass thin-film mock modules; high precision creep measurements; high-temperature environment; moisture-permeable materials; outdoor deployment; photovoltaic modules; polymeric materials; size 20 mum; temperature 100 C; temperature 85 C; thermoplastic encapsulant materials; thermoplastic material; Films; Glass; Indexes; Lamination; Optical fibers; Temperature measurement; Creep; Encapsulant; Polymer; Qualification Standards; Thermoplastic;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE
Conference_Location :
Austin, TX
ISSN :
0160-8371
Print_ISBN :
978-1-4673-0064-3
Type :
conf
DOI :
10.1109/PVSC.2012.6317958
Filename :
6317958
Link To Document :
بازگشت