• DocumentCode
    3520122
  • Title

    Multiway Clustering for Creating Biomedical Term Sets

  • Author

    Kandylas, Vasileios ; Ungar, Lyle ; Sandler, Ted ; Jensen, Shane

  • Author_Institution
    Comput. & Inf. Sci., Univ. of Pennsylvania, Philadelphia, PA
  • fYear
    2008
  • fDate
    3-5 Nov. 2008
  • Firstpage
    449
  • Lastpage
    452
  • Abstract
    We present an EM-based clustering method that can be used for constructing or augmenting ontologies such as MeSH. Our algorithm simultaneously clusters verbs and nouns using both verb-noun and noun-noun co-occurrence pairs. This strategy provides greater coverage of words than using either set of pairs alone, since not all words appear in both datasets. We demonstrate it on data extracted from Medline and evaluate the results using MeSH and Wordnet.
  • Keywords
    bioinformatics; ontologies (artificial intelligence); pattern clustering; statistical analysis; word processing; EM-based clustering method; MeSH; Wordnet; multiway clustering; ontologies; Bioinformatics; Biomedical computing; Clustering algorithms; Clustering methods; Data mining; Information science; Mutual information; Natural language processing; Ontologies; Statistics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Bioinformatics and Biomedicine, 2008. BIBM '08. IEEE International Conference on
  • Conference_Location
    Philadelphia, PA
  • Print_ISBN
    978-0-7695-3452-7
  • Type

    conf

  • DOI
    10.1109/BIBM.2008.25
  • Filename
    4684937