DocumentCode :
3520123
Title :
A study of gross error detection and data reconciliation
Author :
Lingke Zhou ; Hongye Su ; Jian Chu
Author_Institution :
National Laboratory of Industrial Control Technology & nstitute of Advanced Process Control
Volume :
2
fYear :
2004
fDate :
15-19 June 2004
Firstpage :
1668
Lastpage :
1670
Abstract :
Iterative measurement test (IMT) method is a effective method to detect gross errors of chemical process. But under the condition that measurement errors of process variable are correlated, the ZMT method´s power of correctly detect variable in gross error decrease. The situation when there is one gross error is studied, and therefore a modified IMT is introduced which can increase the power of correctly identifying variable.
Keywords :
Error correction; Gaussian distribution; Iterative methods; Laboratories; Maximum likelihood estimation; Measurement errors; Pollution measurement; Statistical analysis; Testing; Vectors; Gross error detection; IMT; data reconciliation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on
Conference_Location :
Hangzhou, China
Print_ISBN :
0-7803-8273-0
Type :
conf
DOI :
10.1109/WCICA.2004.1340954
Filename :
1340954
Link To Document :
بازگشت