DocumentCode :
35207
Title :
Recursive Identification of MIMO Wiener Systems
Author :
Bi-Qiang Mu ; Han-Fu Chen
Author_Institution :
Key Lab. of Syst. & Control, Acad. of Math. & Syst. Sci., Beijing, China
Volume :
58
Issue :
3
fYear :
2013
fDate :
Mar-13
Firstpage :
802
Lastpage :
808
Abstract :
Stochastic approximation (SA) algorithms are proposed to identify a multi-input and multi-output (MIMO) Wiener system, in which the system input is taken to be a sequence of independent and identically distributed (i.i.d.) Gaussian random vectors ukN(0,I). The algorithm for identifying the nonlinear part is designed with multi-variable kernel functions. Under suitable conditions, we show that the estimates of the coefficients of the linear subsystem and of the values of the nonlinear function converge to the respective true values with probability one.
Keywords :
Gaussian processes; MIMO systems; approximation theory; convergence of numerical methods; linear systems; nonlinear functions; random processes; recursive estimation; set theory; vectors; Gaussian random vectors; MIMO Wiener systems; SA algorithm; independent and identically distributed Gaussian random vectors; linear subsystem; multiinput and multioutput Wiener system; multivariable kernel functions; nonlinear function convergence; probability; recursive identification; stochastic approximation algorithm; Approximation algorithms; Approximation methods; Convergence; Estimation; Kernel; MIMO; Vectors; $alpha$ -mixing; MIMO Wiener system; stochastic approximation; strong consistency;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2012.2215539
Filename :
6286990
Link To Document :
بازگشت