DocumentCode :
3521091
Title :
A real-time cyber-physical energy management system for smart houses
Author :
Wu, Wei ; Aziz, Muhammad Khalid ; Huang, Hantao ; Yu, Hao ; Gooi, Hoay Beng
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
fYear :
2011
fDate :
13-16 Nov. 2011
Firstpage :
1
Lastpage :
8
Abstract :
The substitution of non-renewable energy by renewable energy as electricity supply is an emerging trend for development of smart houses nowadays. For example, solar photovoltaic (PV) panels, rechargeable batteries, external power supply, and power-consuming houses have formed a distributed micro-smart-grid. The traditional energy management system (EMS) for such a micro-smart-grid is, however, based on static demand model. As such, the resource (solar energy) cannot be optimally allocated to each house with real-time adjustment when the battery profile is different. In order to achieve high utilization rate of solar-energy, we propose a cyber-physical controller for real-time EMS of smart houses in this paper. Based on physically sensed battery profile, one cyber-physical controller enables the resource to be shared between different houses. The micro-smart-grid is modeled by decentralized multi-supplier and multi-customer system. The proposed real-time EMS is formulated based on the modified minority-game (MG) algorithm such that the task (or EU load) can be allocated with balanced distribution and hence improved utilization rate. The experiment results show that the proposed EMS can increase the solar energy utilization rate by 12.78% on average (up to 20%) when compared to the traditional design under the static demand model. Moreover, the load balancing of tasks (or customers) on each battery (or supplier) is significantly improved. For example, the average standard deviation of the load of tasks on batteries in each month is reduced from 45.36 KWh (static demand model) to 5.19 KWh (proposed model). The improved load balancing can further prolong lifetime of batteries.
Keywords :
battery storage plants; building integrated photovoltaics; building management systems; demand side management; distributed power generation; game theory; real-time systems; smart power grids; solar power; EMS; cyber-physical controller; decentralized multisupplier; distributed microsmart grid; electricity supply; energy management system; load balancing; minority-game algorithm; multicustomer system; nonrenewable energy source; real-time system; smart houses; solar energy utilization; static demand model; Batteries; Electricity; Energy management; Load modeling; Real time systems; Solar energy; System-on-a-chip; Solar energy; batteries; energy management; smart grids;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Innovative Smart Grid Technologies Asia (ISGT), 2011 IEEE PES
Conference_Location :
Perth, WA
Print_ISBN :
978-1-4577-0873-2
Electronic_ISBN :
978-1-4577-0874-9
Type :
conf
DOI :
10.1109/ISGT-Asia.2011.6167084
Filename :
6167084
Link To Document :
بازگشت