DocumentCode :
3521464
Title :
Semiclassical Limit of Solutions to an Ultra-Small Semiconductor Device Model
Author :
Dong Jianwei
Author_Institution :
Dept. of Math. & Phys., Zhengzhou Inst. of Aeronaut. Ind. Manage., Zhengzhou, China
fYear :
2011
fDate :
28-29 May 2011
Firstpage :
1
Lastpage :
4
Abstract :
The semiclassical limit of solutions to the initial Dirichlet-Neumann boundary value problem for bipolar isentropic quantum drift-diffusion model in one space dimension is investigated. It is shown that the solutions of the problem converge to the one of classical drift-diffusion model as the Planck constant approaches to zero by using interpolation technique and compactness theory.
Keywords :
boundary-value problems; interpolation; semiconductor device models; Planck constant approaches; bipolar isentropic quantum drift-diffusion model; compactness theory; initial Dirichlet-Neumann boundary value problem; interpolation technique; ultra-small semiconductor device model; Boundary conditions; Charge carrier processes; Equations; Mathematical model; Semiconductor device modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems and Applications (ISA), 2011 3rd International Workshop on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-9855-0
Electronic_ISBN :
978-1-4244-9857-4
Type :
conf
DOI :
10.1109/ISA.2011.5873395
Filename :
5873395
Link To Document :
بازگشت