DocumentCode :
3524331
Title :
The fractional Hilbert transform and dual-tree Gabor-like wavelet analysis
Author :
Chaudhury, Kunal Narayan ; Unser, Michael
Author_Institution :
Biomed. Imaging Group, Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne
fYear :
2009
fDate :
19-24 April 2009
Firstpage :
3205
Lastpage :
3208
Abstract :
We provide an amplitude-phase representation of the dual-tree complex wavelet transform by extending the fixed quadrature relationship of the dual-tree wavelets to arbitrary phase-shifts using the fractional Hilbert transform (fHT). The fHT is a generalization of the Hilbert transform that extends the quadrature phase-shift action of the latter to arbitrary phase-shifts a real shift parameter controls this phase-shift action. Next, based on the proposed representation and the observation that the fHT operator maps well-localized B-spline wavelets (that resemble Gaussian-windowed sinusoids) into B-spline wavelets of the same order but different shift, we relate the corresponding dual-tree scheme to the paradigm of multiresolution windowed Fourier analysis.
Keywords :
Fourier transforms; Hilbert transforms; signal processing; splines (mathematics); trees (mathematics); wavelet transforms; B-spline wavelet; Hilbert transform; amplitude-phase representation; dual-tree Gabor like wavelet analysis; multiresolution windowed Fourier analysis; quadrature phase-shift action; Biomedical imaging; Biomedical signal processing; Discrete wavelet transforms; Gaussian processes; Image analysis; Optical signal processing; Signal resolution; Spline; Wavelet analysis; Wavelet transforms; B-spline Wavelet; Dual-Tree Complex Wavelet Transform (DT-CWT); Fractional Hilbert Transform; Gabor Function;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1520-6149
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2009.4960306
Filename :
4960306
Link To Document :
بازگشت