DocumentCode :
352473
Title :
Information fusion for spoken document retrieval
Author :
Ng, Kenney
Author_Institution :
Lab. for Comput. Sci., MIT, Cambridge, MA, USA
Volume :
6
fYear :
2000
fDate :
2000
Firstpage :
2405
Abstract :
Investigates the fusion of different information sources, with the goal of improving performance on spoken document retrieval (SDR) tasks. In particular, we explore the use of multiple transcriptions from different automatic speech recognizers, the combination of different types of subword unit indexing terms, and the combination of word- and subword-based units. To perform the retrieval, we use a novel probabilistic information retrieval model which retrieves documents based on maximum likelihood ratio scores. Experiments on the 1998 TREC-7 SDR task show that the use of these different information fusion approaches can result in significantly improved retrieval performance
Keywords :
information retrieval; maximum likelihood estimation; probability; sensor fusion; speech recognition; vocabulary; TREC-7 task; automatic speech recognizers; information fusion; information sources; maximum likelihood ratio scores; multiple transcriptions; probabilistic information retrieval model; retrieval performance; spoken document retrieval; subword unit indexing terms; word-based units; Amplitude shift keying; Automatic speech recognition; Computer science; Indexing; Information retrieval; Laboratories; Natural languages; Performance evaluation; Training data; Vocabulary;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
Conference_Location :
Istanbul
ISSN :
1520-6149
Print_ISBN :
0-7803-6293-4
Type :
conf
DOI :
10.1109/ICASSP.2000.859326
Filename :
859326
Link To Document :
بازگشت