DocumentCode :
3525882
Title :
Hierarchical clustering of neural data using Linked-Mixtures of Hidden Markov Models for Brain Machine Interfaces
Author :
Darmanjian, Shalom ; Principe, Jose
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL
fYear :
2009
fDate :
19-24 April 2009
Firstpage :
3505
Lastpage :
3508
Abstract :
In this paper, we build upon previous brain machine interface (BMI) signal processing models that require a-priori knowledge about the patient´s arm kinematics. Specifically, we propose an unsupervised hierarchical clustering model that attempts to discover both the interdependencies between neural channels and the self-organized clusters represented in the spatial-temporal neural data. Given that BMIs must work with disabled patients who lack arm kinematic information, the clustering work describe within this paper is very relevant for future BMIs.
Keywords :
biomechanics; brain-computer interfaces; hidden Markov models; medical signal processing; neurophysiology; pattern clustering; signal representation; unsupervised learning; BMI; brain machine interface; disabled patient; hidden Markov model linked-mixture; neural channel; patient arm kinematics; self-organized cluster; signal processing model; spatial-temporal neural representation; unsupervised hierarchical clustering model; Animal structures; Brain modeling; Electrodes; Hidden Markov models; Information retrieval; Kinematics; Neurons; Signal processing; Signal processing algorithms; Voltage; Brain Machine Interface; Hidden Markov Model; Hierarchical Clustering; Neural Data Clustering; Neural Spike Data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1520-6149
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2009.4960381
Filename :
4960381
Link To Document :
بازگشت