Title :
A complex cross-spectral distribution model using Normal Variance Mean Mixtures
Author :
Palmer, J.A. ; Makeig, S. ; Kreutz-Delgado, K.
Author_Institution :
Swartz Center for Comput. Neurosci., Univ. of California, La Jolla, CA
Abstract :
We propose a model for the density of cross-spectral coefficients using normal variance mean mixtures. We show that this model density generalizes the corresponding marginal density of the complex Wishart distribution for the cross-spectral density. The maximum likelihood estimate of parameters in the distribution is derived, and examples are given from alpha brain wave sources in separated EEG data.
Keywords :
electroencephalography; maximum likelihood estimation; medical signal processing; EEG data; alpha brain wave sources; complex Wishart distribution; complex cross-spectral distribution model; cross-spectral coefficients; marginal density; maximum likelihood estimation; normal variance mean mixtures; Biomedical signal processing; Brain modeling; Coherence; Electroencephalography; Frequency estimation; Independent component analysis; Phase estimation; Random processes; Rhythm; Scalp; coherence; cross-spectrum; estimation; phase;
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2009.4960397