DocumentCode :
3526755
Title :
Filtering web text to match target genres
Author :
Marin, M.A. ; Feldman, S. ; Ostendorf, M. ; Gupta, M.
Author_Institution :
Dept. of Electr. Eng., Univ. of Washington, Seattle, WA
fYear :
2009
fDate :
19-24 April 2009
Firstpage :
3705
Lastpage :
3708
Abstract :
In language modeling for speech recognition, both the amount of training data and the match to the target task impact the goodness of the model, with the trade-off usually favoring more data. For conversational speech, having some genre-matched text is particularly important, but also hard to obtain. This paper proposes a new approach for genre detection and compares different alternatives for filtering Web text for genre to improve language models for use in automatic transcription of broadcast conversations (talk shows).
Keywords :
Internet; information filtering; speech recognition; Web text filtering; genre detection; genre-matched text; language modeling; speech recognition; Adaptation model; Information filtering; Information filters; Information retrieval; Matched filters; Natural languages; Search engines; Speech recognition; Statistics; Training data; genre; language modeling; web text filtering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1520-6149
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2009.4960431
Filename :
4960431
Link To Document :
بازگشت