Title :
A flat direct model for speech recognition
Author :
Heigold, G. ; Zweig, G. ; Li, X. ; Nguyen, P.
Author_Institution :
Dept. of Comput. Sci. 6, RWTH Aachen Univ., Aachen
Abstract :
We introduce a direct model for speech recognition that assumes an unstructured, i.e., flat text output. The flat model allows us to model arbitrary attributes and dependences of the output. This is different from the HMMs typically used for speech recognition. This conventional modeling approach is based on sequential data and makes rigid assumptions on the dependences. HMMs have proven to be convenient and appropriate for large vocabulary continuous speech recognition. Our task under consideration, however, is the Windows Live Search for Mobile (WLS4M) task. This is a cellphone application that allows users to interact with web-based information portals. In particular, the set of valid outputs can be considered discrete and finite (although probably large, i.e., unseen events are an issue). Hence, a flat direct model lends itself to this task, making the adding of different knowledge sources and dependences straightforward and cheap. Using e.g. HMM posterior, m-gram, and spotter features, significant improvements over the conventional HMM system were observed.
Keywords :
hidden Markov models; portals; search engines; speech recognition; Web-based information portals; Windows Live Search for Mobile; cellphone application; flat direct model; hidden Markov models; knowledge sources; language model; speech recognition; voice search; Cellular phones; Computer science; Detectors; Entropy; Hidden Markov models; Natural languages; Portals; Speech recognition; Testing; Vocabulary; language model; maximum entropy; nearest neighbor; speech recognition; voice search;
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2009.4960470