DocumentCode :
3528456
Title :
Opinion dynamics and stubbornness through mean-field games
Author :
Stella, Leonardo ; Bagagiolo, Fabio ; Bauso, Dario ; Como, Giacomo
Author_Institution :
Univ. di Palermo, Palermo, Italy
fYear :
2013
fDate :
10-13 Dec. 2013
Firstpage :
2519
Lastpage :
2524
Abstract :
This paper provides a mean field game theoretic interpretation of opinion dynamics and stubbornness. The model describes a crowd-seeking homogeneous population of agents, under the influence of one stubborn agent. The game takes on the form of two partial differential equations, the Hamilton-Jacobi-Bellman equation and the Kolmogorov-Fokker-Planck equation for the individual optimal response and the population evolution, respectively. For the game of interest, we establish a mean field equilibrium where all agents reach ε-consensus in a neighborhood of the stubborn agent´s opinion.
Keywords :
game theory; multi-agent systems; partial differential equations; Hamilton-Jacobi-Bellman equation; Kolmogorov-Fokker-Planck equation; mean field equilibrium; mean field game theoretic interpretation; opinion dynamics; partial differential equations; population evolution; stubborn agent; Games; Level set; Mathematical model; Sociology; Standards; Statistics; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on
Conference_Location :
Firenze
ISSN :
0743-1546
Print_ISBN :
978-1-4673-5714-2
Type :
conf
DOI :
10.1109/CDC.2013.6760259
Filename :
6760259
Link To Document :
بازگشت