Title :
Explicit invariant approximation of the mRPI set for LTI dynamics with zonotopic disturbances
Author :
Stoican, Florin ; Hovd, Morten ; Olaru, Sorin
Author_Institution :
Dept. of Eng. Cybern., Norwegian Univ. of Sci. & Technol. (NTNU), Trondheim, Norway
Abstract :
In this paper we provide a robust positive invariance (RPI) over-approximation of the minimal RPI (mRPI) set associated for linear dynamics with zonotopic disturbances. We prove that the RPI construction converges toward the mRPI set and its conservatism diminishes monotonically with respect to the complexity of the representation (a “tightness” coefficient is calculated a priori). The results are tested in illustrative examples.
Keywords :
approximation theory; convergence of numerical methods; invariance; linear systems; set theory; LTI dynamics; RPI construction; conservatism; explicit invariant approximation; linear dynamics; mRPI set; minimal RPI set; representation complexity; robust positive invariance; robust positive invariance over-approximation; tightness coefficient; zonotopic disturbances; Approximation methods; Complexity theory; Economic indicators; Eigenvalues and eigenfunctions; Generators; Robustness; Trajectory;
Conference_Titel :
Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on
Conference_Location :
Firenze
Print_ISBN :
978-1-4673-5714-2
DOI :
10.1109/CDC.2013.6760377