DocumentCode :
3530829
Title :
Volcano-seismic signal detection and classification processing using hidden Markov models. Application to San Cristóbal volcano, Nicaragua
Author :
Gutierrez, Lillian ; Ibaez, Jesus ; Cortes, Guillermo ; Ramirez, J. ; Benitez, Carmen ; Tenorio, Virginia ; Isaac, Álvarez
Author_Institution :
Dep. Signal Theor. Networking & Commun., Univ. of Granada, Granada, Spain
Volume :
4
fYear :
2009
fDate :
12-17 July 2009
Abstract :
We present a method for automatic seismic event detection and classification, focusing on volcanic-seismic signals by means of the validity of the hidden Markov modeling (HMM) method in active volcanoes. Recordings of different seismic event types are studied at one active volcano; San Cristobal in Nicaragua. We use data from one field surveys carried out in February to March 2006. More than 600 hours of data in San Cristobal volcano were analyzed and 1098 seismic events were registered at short period stations. These events were manually labelled by a single expert technicians and identified three types classes of signals (S1, S2, S3) and tremor background seismic noise (NS). The method analyzes the seismograms comparing the characteristics of the data to a number of event classes defined beforehand. If a signal is present, the method detects its occurrence and produces a classification. From the application performed over our data set, we have demonstrated that in order to have a reliable result, a careful and adequate segmentation process is crucial. Also, each type of signals requires its own characterization. That is, each signal type must be represented by its own specific model, which would include the effects of source, path and sites. Once we have built this model, the success level of the system is high. Extensive performance evaluation is conducted to derive the optimal configuration of the different parameters Correct classification rates of up to 80% are achieved. The high success rates obtained imply that the method is fully able to detect, isolate, and identify seismic signals on raw seismic data. These results imply that, once an adequate training process has been used, the present method is particularly appropriate to work in real time, and in parallel to the data acquisition.
Keywords :
data acquisition; geophysical signal processing; geophysical techniques; hidden Markov models; seismology; volcanology; AD 2006 02 to 03; Correct classification rates; Nicaragua; San Cristobal volcano; active volcanoes; data acquisition; hidden Markov modeling method; segmentation process; seismic data; seismic event detection; seismic signal processing; seismograms; success level; success rates; tremor background seismic noise; volcanic-seismic signals detection; volcano monitoring; Background noise; Data acquisition; Event detection; Explosions; Hidden Markov models; Monitoring; Signal detection; Signal processing; Speech recognition; Volcanoes; Seismic signal processing; hidden Markov Models; volcano monitoring;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium,2009 IEEE International,IGARSS 2009
Conference_Location :
Cape Town
Print_ISBN :
978-1-4244-3394-0
Electronic_ISBN :
978-1-4244-3395-7
Type :
conf
DOI :
10.1109/IGARSS.2009.5417428
Filename :
5417428
Link To Document :
بازگشت