DocumentCode :
3531036
Title :
An EM algorithm for SCFG in formal syntax-based translation
Author :
Huang, Songfang ; Zhou, Bowen
Author_Institution :
IBM T.J. Watson Res. Center, Yorktown Heights, NY
fYear :
2009
fDate :
19-24 April 2009
Firstpage :
4813
Lastpage :
4816
Abstract :
In this paper, we investigate the use of bilingual parsing on parallel corpora to better estimate the rule parameters in a formal syntax-based machine translation system, which are normally estimated from the inaccurate heuristics. We use an expectation-maximization (EM) algorithm to re-estimate the parameters of synchronous context-free grammar (SCFG) rules according to the derivation knowledge from parallel corpora based on maximum likelihood principle, rather than using only the heuristic information. The proposed algorithm produces significantly better BLEU scores than a state-of-the-art formal syntax-based machine translation system on the IWSLT 2006 Chinese to English task.
Keywords :
context-free grammars; expectation-maximisation algorithm; language translation; SCFG; bilingual parsing; expectation-maximization algorithm; formal syntax-based machine translation system; maximum likelihood principle; parallel corpora; synchronous context-free grammar; Context modeling; Induction generators; Maximum likelihood estimation; Natural languages; Parameter estimation; Production; Speech; Synchronous generators; Training data; Expectation-Maximization; Formal Syntax-based Translation; Inside-Outside Algorithm; SCFG;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1520-6149
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2009.4960708
Filename :
4960708
Link To Document :
بازگشت