DocumentCode :
3531396
Title :
Evolutionary computation for model order reduction with Parametric Generalised SPA
Author :
Muscato, G. ; Xibilia, Maria Gabriella
Author_Institution :
DIEEI, Univ. of Catania, Catania, Italy
fYear :
2013
fDate :
10-13 Dec. 2013
Firstpage :
3703
Lastpage :
3707
Abstract :
In this paper evolutionary computation algorithms are applied to select optimal parameters in model order reduction for linear systems. In particular a parameterized set of reduced order model is obtained by using a Parametric Generalised Singular Perturbation Approximation of a balanced realization. The optimization algorithm is then used to select the parameter set that minimize a suitable performance index. Numerical examples are reported in comparison with other model order reduction methods.
Keywords :
approximation theory; concave programming; evolutionary computation; linear systems; reduced order systems; evolutionary computation; linear systems; model order reduction; optimal parameter selection; optimization algorithm; parametric generalised SPA; parametric generalised singular perturbation approximation; performance index; reduced order model; Algorithm design and analysis; Approximation methods; Evolutionary computation; Genetic algorithms; Numerical models; Optimization; Reduced order systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on
Conference_Location :
Firenze
ISSN :
0743-1546
Print_ISBN :
978-1-4673-5714-2
Type :
conf
DOI :
10.1109/CDC.2013.6760453
Filename :
6760453
Link To Document :
بازگشت