• DocumentCode
    35317
  • Title

    PVA Cryogel for Construction of Deformable PET-MR Visible Phantoms

  • Author

    Soultanidis, G.M. ; Mackewn, J.E. ; Tsoumpas, Charalampos ; Marsden, P.K.

  • Author_Institution
    Dept. of Biomed. Eng., King´s Coll. London, London, UK
  • Volume
    60
  • Issue
    1
  • fYear
    2013
  • fDate
    Feb. 2013
  • Firstpage
    95
  • Lastpage
    102
  • Abstract
    Positron Emission Tomography (PET) is an imaging method affected by artifacts caused by patient motion. PET-MR simultaneous acquisition may provide the means to correct for the effects of motion. This study investigates the creation of a deformable PVA cryogel phantom for motion correction purposes in PET-MR. This phantom has to contain the appropriate concentration of PVA and a sufficient amount of radioactive tracer along with gadolinium contrast agent. The effect of modifying the standard PVA cryogel process were assessed by measuring differences in the Young´s modulus and also the diffusion of radiotracer inside the phantom. The alteration of the freeze-thaw cycle decreased the Young´s modulus up to 50% by comparison with the standard MRI cryogel phantom. The diffusion speed on the other hand was found to be at 2 mm h-1 inside a 10% p.w. cryogel. The results are demonstrated with a simultaneous PET-MR experiment. The new approach of cryogel preparation provides the opportunity to create a PET and MR visible phantom with structural complexity and customized shape, which is capable of reproducible deformations when reproducible pressure is applied. The methodology to build the phantom can be used in other simultaneous or sequential imaging modalities such as SPECT and ultrasound.
  • Keywords
    medical image processing; motion estimation; phantoms; positron emission tomography; PVA cryogel phantom; SPECT; Young´s modulus; deformable PET-MR visible phantom; freeze-thaw cycle; gadolinium contrast agent; imaging method; motion correction; patient motion; positron emission tomography; radioactive tracer; sequential imaging modality; structural complexity; Computed tomography; Phantoms; Positron emission tomography; Shape; Standards; Young´s modulus; MRI; PET; PVA; motion correction;
  • fLanguage
    English
  • Journal_Title
    Nuclear Science, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9499
  • Type

    jour

  • DOI
    10.1109/TNS.2013.2238952
  • Filename
    6423849