DocumentCode :
353209
Title :
Structured covariance matrix estimation: a parametric approach
Author :
Jansson, Magnus ; Ottersten, Björn
Author_Institution :
Dept. of Signals, Sensors & Syst., Signal Processing, R. Inst. of Technol., Stockholm, Sweden
Volume :
5
fYear :
2000
fDate :
2000
Firstpage :
3172
Abstract :
The problem of estimating a positive semi-definite Toeplitz covariance matrix consisting of a low rank matrix plus a scaled identity from noisy data arises in many applications. We propose a computationally attractive (noniterative) covariance matrix estimator with certain optimality properties. For example, under suitable assumptions the proposed estimator achieves the Cramer-Rao lower bound on the covariance matrix parameters. The resulting covariance matrix estimate is also guaranteed to possess all of the structural properties of the true covariance matrix. Previous approaches to this problem have either resulted in computationally unattractive iterative solutions or have provided estimates that only satisfy some of the structural relations
Keywords :
Toeplitz matrices; array signal processing; covariance matrices; direction-of-arrival estimation; Cramer-Rao lower bound; angle of arrival estimation; low rank matrix; noisy data; noniterative covariance matrix estimator; optimality properties; parameter estimation; positive semi-definite Toeplitz covariance matrix; scaled identity; sensor array data; structural properties; structured covariance matrix estimation; Approximation methods; Covariance matrix; Gaussian distribution; Iterative methods; Maximum likelihood estimation; Minimization methods; Optimization methods; Sensor systems; Signal processing; Signal to noise ratio;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
Conference_Location :
Istanbul
ISSN :
1520-6149
Print_ISBN :
0-7803-6293-4
Type :
conf
DOI :
10.1109/ICASSP.2000.861211
Filename :
861211
Link To Document :
بازگشت